If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x+10=0
a = 2; b = -19; c = +10;
Δ = b2-4ac
Δ = -192-4·2·10
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{281}}{2*2}=\frac{19-\sqrt{281}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{281}}{2*2}=\frac{19+\sqrt{281}}{4} $
| -x+4=-4x-2 | | 1/2t=3 | | 2/x=7x+1/3x | | X+3/4x+1/4=-1/8(x-1/3) | | -2x+2=x-1 | | X+3/4x+1/4=-1/8(x-1/3 | | 5x−1=2x+4 | | 5(x−1)+3(2−x)=0 | | 8x-20=3x-1+3x-1 | | 2x+3=3x−5 | | √x2-36=8 | | 10-x²=3x | | -2/3(y+1/9)=2/3(y+3) | | 72+13x=x | | 1/2y-1=2 | | X=43+4y | | -2/8-d=12 | | -x²+6x-5x=0 | | 2x=-3x-4 | | (x−2)(x+4)=−8 | | 6z/6=-12/6 | | (3x+5)4=244 | | 2c^2=2500 | | 6z=-2-10 | | 2(y-9)=40 | | -2x+2=3x-3 | | -25=10-5x | | 6/5+h=2 | | 1/2=(x+4)/2 | | 2x^2+3x=119 | | 3(3a-2)=(16-4a) | | 2y-10=10-3y |